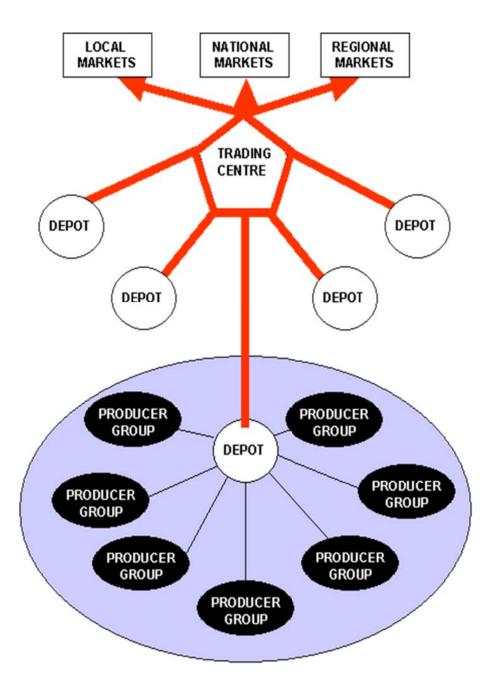


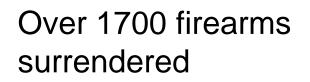
🛄 Virginia Tech

Invent the Future

Developing a Participatory Socio-Economic Model for Food Security, Improved Rural Livelihoods, Watershed Management and Biodiversity Conservation in Southern Africa


> Alexander J. Travis August 31, 2009

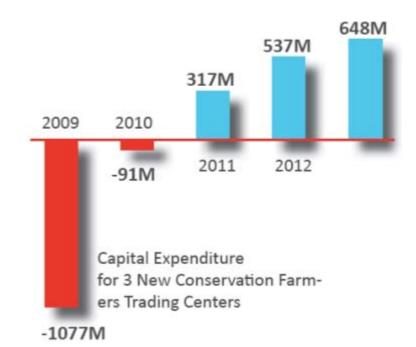

Problems Affecting Conservation Are the Same Problems Affecting Rural Development

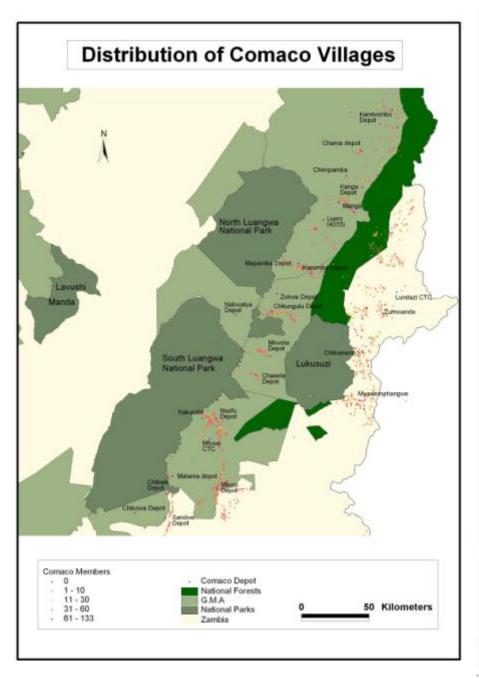


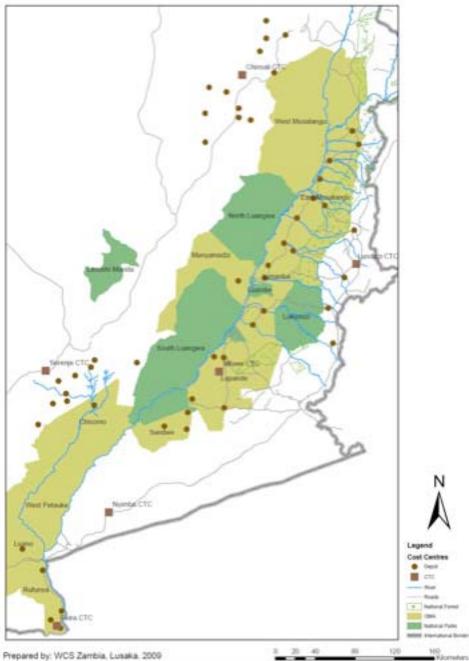
Community Markets for Conservation

Over 40,000 snares surrendered

661 poachers reformed and trained


Specific Aims


- 1. To determine the extent to which the COMACO model can be economically self-sustaining and the effectiveness of the different COMACO model components.
 - business economic analysis
 - historical analysis
 - profit and cost centers
 - natural resource economic valuation--What is the "cost" of biodiversity conservation by this model? (more on this near the end of this presentation)


							-
Summary (USD) COMACO East*							
Location	08/09 FY	09/10 est	10/11 est	11/12 est	12/13 est	13/14 est	Total est
Sales	\$ 470,192	\$ 1,229,970	\$ 1,753,297	\$ 2,045,928	\$ 2,363,134	\$ 2,542,041	\$ 9,934,370
Expenses	720,786	\$ 2,660,597	\$ 2,653,997	\$ 2,464,382	\$ 2,515,512	\$ 2,616,112	\$ 12,910,600
Net Revenue	(250,593)	(1,430,627)	(900,701)	(418,454)	(152,378)	(74,070)	(2,976,230)
Rev - expansion \$	N/A	(978,127)	(571,001)	(327,054)	(96,778)	(33,070)	(2,006,030)
Donor Support	388,841	\$ 1,108,214	\$ 1,108,659	\$ 1,287,247	\$ 1,333,335	\$ 1,338,357	\$ 6,175,811
Closing Balance	138,247	(322,413)	207,958	868,792	1,180,957	1,264,287	3,199,581
* Includes HQ, Lundazi, Mfuwe, Nyimba, Chama (analysis does not include 2009 West Expansion)							
* 80% total HQ & Chipata overhead attributed to COMACO East.							
	Sustainability Analysis of Established Centers (HQ**, Lundazi, Mfuwe)						
	Location	09/10 est	10/11 est	11/12 est	12/13 est	13/14 est	Total est
	Sales	\$ 838,406	\$ 1,108,978	\$ 1,206,486	\$ 1,400,639	\$ 1,478,098	\$ 6,032,607
	Expenses	\$ 1,405,258	\$ 1,411,116	\$ 1,423,279	\$ 1,461,368	\$ 1,523,563	\$ 7,224,585
	Net Revenue	\$ (566,852)	\$ (302,138)	\$ (216,793)	\$ (60,730)	\$ (45,466)	\$ (1,191,978)
	**HO Overhead expanse reduced by 50% current OH covers 6 centers						

*HQ Overhead expense reduced by 50% current OH covers 6 centers

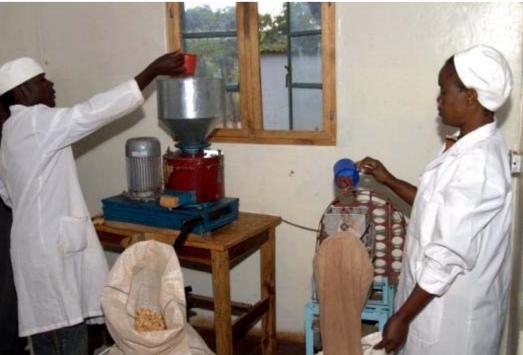
Net Profit Forecast

Impacts of improved business economic sense

- Accelerated adoption of business methods and accounting (now keep day-to-day sales)
- Recognized impacts of transportation costs and value added products (changed location of 3rd CTC from Feira to Nyimba)
- Historical analyses of CTC costs (used to budget new CTCs in Serenge & Chinsali)
 - examples: entered commodity market
 - (2 x 100 ton consignments, K1800/kg price)
 - carbon credits

Specific Aims

- To identify and integrate new technologies into the COMACO model to improve its profitability, food security, and rural incomes.
 - food sciences
 - crop and soil sciences
 - veterinary sciences (poultry and goats)


Food processing at COMACO - Peanut butter processing in 2005 -

Peanut butter processing - 2007

- Hygiene practices improved considerably, but still needed improvement
- Quality problems: phase separation, leaky jars

Peanut butter processing in 2009

Cooling

Blanching

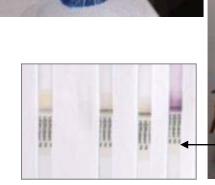
Research to improve peanut butter minimize oil separation improve packaging improve price/unit improve shelf life

"Crunchy" peanut butter produced in 2007

Photo: June 24, 2009

Basic food hygiene workshop - 2007


Trainees at the Lundazi COMACO Processing Center

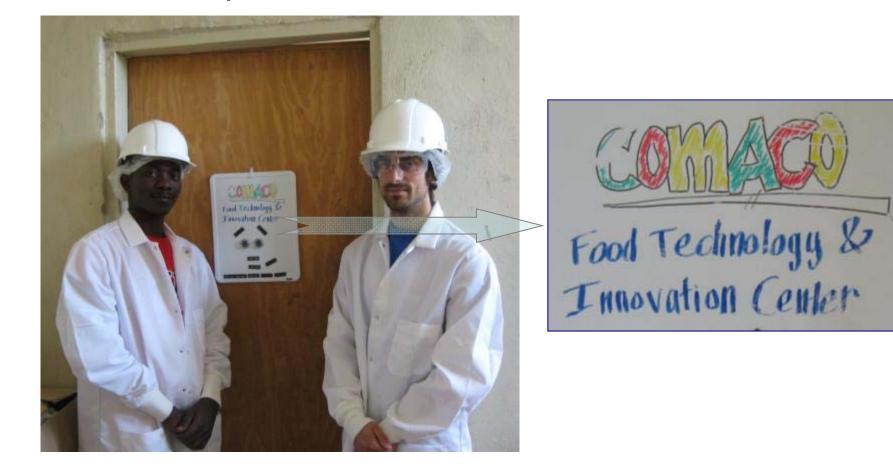


Practicing proper hand washing and surface cleaning

Impact of training

- Enhanced capacity for safe food processing with electronic & printed materials for future in-house training
- Provided WFP with proof of training, which helped COMACO get approved as a HEPS vendor for WFP
- 270 ton contracts at \$350/ton (contracts with WFP and Catholic Relief Services)
- Now also selling to 4 regional hospitals and starting with schools
- Approx 60% is used within Eastern Province itself
 - provides unknown cost savings
 - reduces carbon footprint vs importation

How does it look in 2009?



As of June 2009:

 Seeds for new product development lab have been "planted"

New product development

- Extrusion could be key to product line extension
- 2 extruders now available

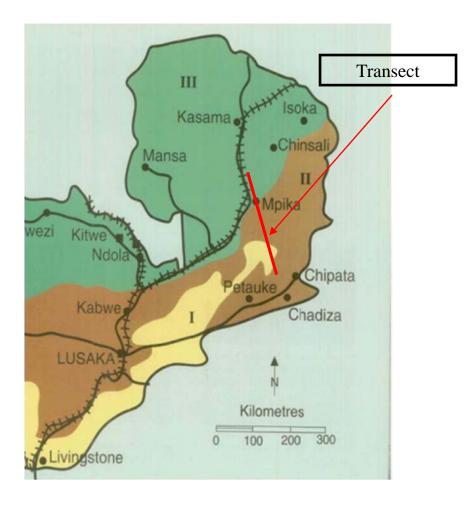
New product development:

Rice crisps

Health snacks

Energy health bar

Soil and crop sciences

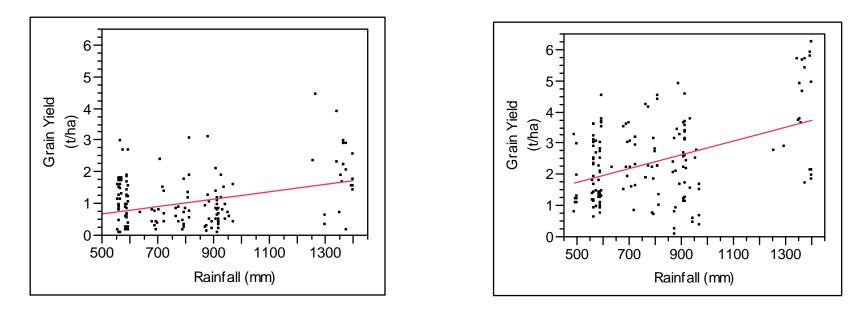

To investigate:

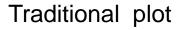
(i) under which environmental conditions conservation farming works best;

(ii) what are the reasons for better yields;

 (iii) what types of organic amendments (qualities) are best for improving production potential under conservation farming.

Methodology

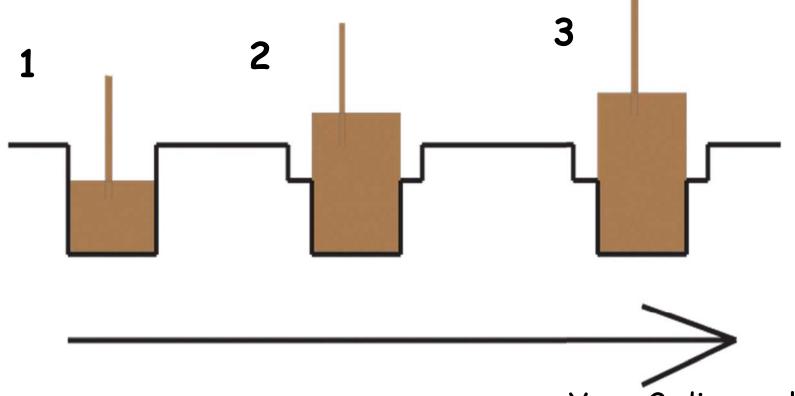

Agroecological Zones;


I: <700mm rainfall p.a. Rift Troughs

Loamy and clayey soils with coarse to fine loam top soils

- II: 700- 1000mm rainfall p.a.Degraded plateauModerately leached clayey to loamy soils
- III: >1000mm rainfall p.a.Degraded plateauHighly weathered and leached clayey to loamy soils;

Grain yield under conservation farming along a climatic gradient



- benefits of conservation farming increased with increasing rainfall
- quantified max yields possible for each agroecozone, providing benchmarks for conservation farming results (max yield with inorganic fertilizer + biochar or manure + fertilizer)

Soil and crop sciences practical recommendations

- 1. Plant seeds just below OM additions for the following years while re-digging the trench to allow collection of water.
- 2. Need to increase nutrient return to soil (e.g. growing termites in basins in dry season)
- 3. For soil organic amendments, use biochar for sequestering carbon in soil and retaining nutrients and moisture. Combine this with high nitrogen manure eg Tithonia

Future considerations

Year 1, dig basin

Plant the seed just below the OM additions, for the following years while redigging the trench to allow collection of water. Year 2 dig small trench around the basin, add OM on top instead

Veterinary Sciences:

Poultry and Goats

initial research:

survey of causes of mortality

survey of husbandry practices

focused research:

NewCastle Disease community vaccination efforts (over 10,000 birds per cycle per site)

training:

improved husbandry

disease prevention/recognition

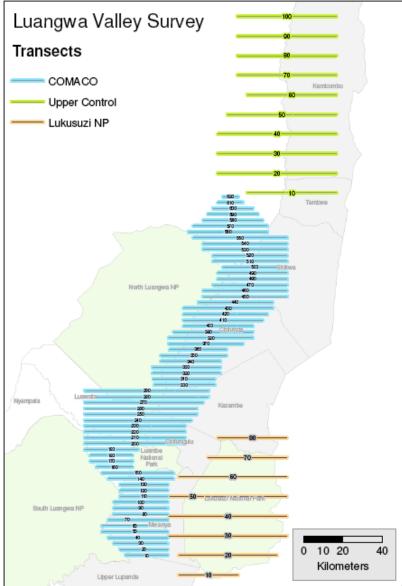
extension staff "training the trainers"

Poultry Health and Management A guide to raising healthy village poultry

<u>Compiled by</u>: Erin McDonald <u>Special thanks for illustrations</u>: Network for Smallholder Poultry Development <u>Supported by</u>: Wildlife Conservation Society Cornell University USAID SANREM CRSP <u>VirginiaTech</u>

CONTENTS:	
Nutrition	
Housing	
Health and disease	

Page 2 Page 6 Page 8



Specific Aims

- 3. To determine the extent to which the COMACO model provides selfsustaining social institutions and meaningful roles for COMACO participants.
 - COMACO baseline surveys

Specific Aims

- 4. To determine the extent to which the COMACO model improves biodiversity and watershed conservation.
 - aerial wildlife surveys (COMACO core and control areas, hippos)
 - watershed, canopy and bushfire analysis

Aerial Survey 2008 28 Sept - 4 Oct

1999, 2002 - ZAWA 2006, 2007, 2008 - WCS

Survey zone	Area	Transect spacing
COMACO core	6,650 km²	3 km
Upper Control	5,250km ²	10 km
Lukusuzi National Park	3,900 km ²	10 km

Changes in "Poaching Liable Guild": waterbuck, eland, roan, hartebeest, kudu

	1999+2002		2006+2008		
Area	Total	Se	Total	Se	d-test
Chikwa/Fulaza	109	43	464	126	2.68
Chifunda	17	6	123	50	2.11
Chanjuzi	0	0	216	50	4.34
Munyamadzi	146	37	218	84	0.78
Mwanya	111	40	124	44	0.22
Total	325	56	694	125	2.70

Reducing Human wildlife conflicts in Game Management Areas.

Better controls on use of electric fencing

Elephant Damage to Crops

Chili blasting, using transformed poachers to reduce crop damage by elephants

Blasting Materials

What are the costs and benefits of providing biodiversity conservation through the COMACO model?

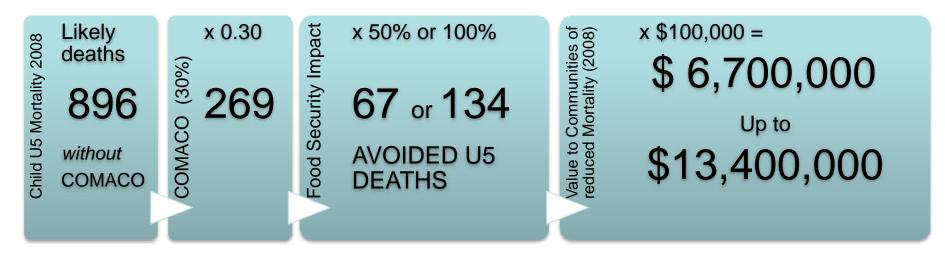
- what is the value of wildlife?
 -willingness to pay survey of tourists
 -vital information for Zambian government
- what is the value of improvements to human nutrition/health? What is the value of a life?

Use-Value of wildlife to South Luangwa National Park visitors

Attribute	WTP Range (Entrance fee <i>increase</i> from the current USD 25 per day per person)	
Small to Medium Animals (per 10% increase in population)	\$0.50-0.90	
Large Mammals (per 10% increase in population)	\$1.60 - 2.00	
Prominent Species (per 10% increase in population)	\$2.10 - 2.80	
Rhinoceros Re-population (10 breeding pair program)	\$1.30 - 5.50	

- Willingness to Pay (WTP) values for change in a single attribute
- WTP increase linearly with population increase
- Highly Statistically Significant Results
 - An increase of 10% in large mammal populations alone represents a potential \$50,000 value to tourists each year
- An increases of 10% in all wildlife groups represent a value of around \$142,000/year
- Non-use values are in addition to this, and likely to be much larger

Food Security, Malnutrition, Child Mortality and the Value of Statistical Life


- Over 30,000 member households of COMACO, mostly in the Eastern Province of Zambia.
 COMACO targets households that are most food insecure
 - Over 30,000 U5's are part of COMACO member families.
- Under 5 Mortality is 152 per 1000 in Eastern Province [119 nationally and ranked 13th highest rate of child mortality in the world (UNICEF 2009)]

Food Security, Malnutrition, Child Mortality and the Value of Statistical Life (cont.)

- Malnutrition in children compounds the effects of other diseases, and the 'probability attributed risk factor' has been estimated to be 51% for under five in-patients in rural Kenya (Bejon, 2008).
 - Preventing malnutrition in U5's reduces inpatient deaths by 51%
- Assuming a 15% mortality rate (likely to be higher) of those admitted underweight, 627 children lost their lives in these areas in 2008 alone, from a probabilistic perspective

How does COMACO affect this? (Malnutrition, Child Mortality, and the Value of Statistical Life)

- Consider a range of impact levels: proportion of members (and their families) who attain a state of food security either partial (50%) or complete (100%) and assume food security results in proper nutrition Based on the these assumptions the number of U5 deaths would have been 134 to 269 *greater* without COMACO (2008)
- The approximate Value of a Statistical Life in rural Africa is \$100,000

• Value from 2004 – 2008 is between \$39,000,000-\$78,000,000

What are the costs and benefits of providing biodiversity conservation through the COMACO model?

- are there additional economic benefits to conservation farming?
- --carbon markets for agroforestry efforts
- --goal of 1 million Faidherbia albida plantings per year

(aforestation, reforestation, avoided deforestation, soil sequestration from CF; compliance vs voluntary markets; different methodologies, validation, verification, standards)

Faidherbia albida

Lessons for Global Development (Luangwa Valley not unique, can be used in buffer zones where people & wildlife share resources)

- 1. local ownership/pride
- 2. help develop analytical business skills
- 3. value-added products, stable contracts
- 4. food safety/hygiene training essential
- 5. shelf life and packaging
- 6. cropping practices/ soil amendments vary tremendously--farmer education
- 7. sustainable ag methods can improve yields and also lead to new opportunities for profit
- 8. traditional practices off-farm can impact environmental benefits of on-farm changes

- 9. introduced livestock disease can mimic impacts of climate change
- 10. farmers often adapt poorly when they need to rely on a new livestock species
- 11. utilize existing veterinary services (e.g. poultry)
- 12. food processing waste can be utilized for additional products such as animal feed or biochar
- farming strategies still are in need of great improvement and site-specific development (e.g. Faidherbia)
- 14. assessments of impacts on food security can be difficult (move toward biometric markers)

- 15. truly holistic approaches to biodiversity conservation can be successful but require time
- 16. long-term presence of WCS allowed development of COMACO over decades, beyond time-frame for standard grants/programs
- 17. iterative process requires constant monitoring and evaluation
- 18. importance of communications (V-sat connectivity) and transportation
- 19. scaling up is required to become economically selfsustaining
- 20. traditional business models promote scale and product diversity (in contrast to eco-tourism models or forest crop models that rely on provision of small # of crops, but don't contribute back the value-add)

21. risks can arise from influence of neighboring nations/conflicts

- 22. climate variability can have tremendous impacts on agricultural businesses, need to have multiple income streams and build toward an operating reserve
- 23. crop diversification can be a critical adaptation to climate change and increased variability (e.g. cassava)
- 24. long-term relations with local government essential

25. benefits of strategic partnerships (e.g General Mills)

- 26. efforts to improve economy can have wideranging, unintended impacts (e.g. shift toward a cash crop monoculture can leave a community ill-prepared to cope with climate or market variability, leading to unsustainable natural resource utilization, long-term loss of economic opportunities, and food insecurity)
- 27. holistic approaches to biodiversity conservation can provide diverse economic and social benefits
- 28. rural development and biodiversity conservation efforts can and should be integrated--each impacts the other

Acknowledgements

Cornell University

Alfonso Torres Sam Bell **Beth Buckles** Jon Conrad Parfait Eloundou-Enyegue John Fay Lydiah Gatere Peter Hobbs Vongai Kandiwa Johannes Lehmann **Benjamin Lucio** Carmen Moraru Alice Pell William Schulze

International Rural Poultry Centre Robyn Alders Brigitte Bagnol Wildlife Conservation Society

Dale Lewis Steve Osofsky David Moyer*

Virginia Tech University Conrad Heatwole Keith Moore Theo Dillaha

Tropical Soil Biology & Fertility Robert Delve