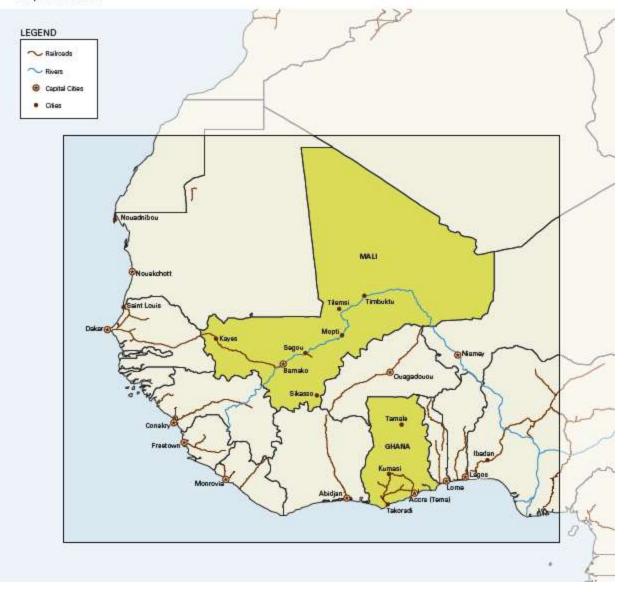
Improving Crop Productivity of Smallholder Farmers through Conservation Agricultural Practices: Key Findings from Ghana and Mali

P.V. Vara Prasad^{1*}, Jesse B. Naab², Roger L. Kanton³ and Mamadou Doumbia⁴

¹Professor, Crop Ecophysiology, Kansas State University, USA
 ² Savanna Agricultural Research Institute, Wa Station, Ghana
 ³ Savanna Agricultural Research Institute, Manga Station, Ghana
 ⁴ Institute dEconomie Rurale (IER), Sutuba, Mali.

*E-mail: vara@ksu.edu



SANREM INNOVATION LAB Feed the Future Innovation Lab for Collaborative Research on Sustainable Agriculture and Natural Resource Management

West Africa: Ghana and Mali

Map of West Africa

Focus was Six Components of Conservation Agricultural Practices (CAPs)

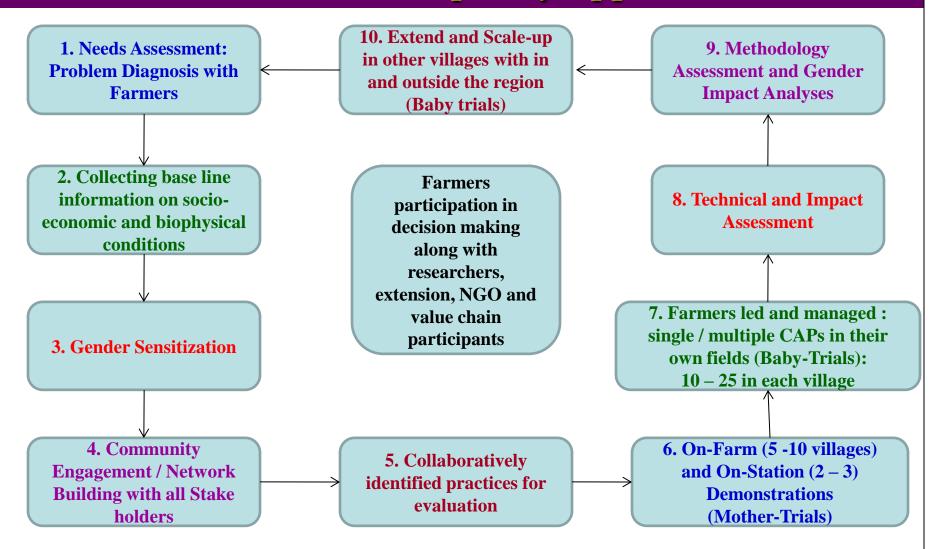
Crop Residues

Cover Crops

Minimum Tillage

Crop Rotations

Water Harvesting



Nutrient Management

Improve productivity of dryland cropping systems.

- 1. Which CAPs can positively contribute to productivity, address needs of farmers and under what specific conditions?
- 2. What are positive and negative aspects (trade-offs) of CAPs both in short-term and long-term?
- **3.** Can CAPs be economically beneficial in short run, can they be adopted by smallholder farmers and if there are preconditions for adoption?

Farmers Participatory Approach

Farmers involved from the start; and Mother – Baby tests.

Key Findings: Ghana

Lead Country PI: Dr. Jesse B. Naab Soil Scientist and Cropping Systems Savanna Agricultural Research Institute <u>Upper West Region</u>, Wa, Ghana

Finding No. 1: <u>Tied Ridges</u> Improve Grain Yield of Maize in the Range of 25 to 70%.

Water Harvesting: Tied Ridges

Flat beds with grass strips

Tied ridges with grass strips Tied ridges with Pigeonpea strips

Maize: Tied Ridges / Water Harvesting

Upper West Region: Nandom – <u>Mother Tests</u>

Treatment	Ν	Iaize gra	g / ha)	
	2010	2011	2012	Mean
Flat bed	1548	1060	907	1172
Flat bed + grass strips	1059	1198	1241	1166 - 1217
Flat bed + pigeon pea	1363	806	1769	
Tied ridges	2052	1963	1074	1696
Tied ridges + grass strip	2267	1463	1954	1895 - 1827 -
Tied ridges + pigeon pea	2084	1176	2407	1889
Significance	*	*	*	*

J.B. Naab, SARI

Maize planted on tied ridges increased grain yield by an average of about 50% compared to flat bed systems.

Maize: Tied Ridges / Water Harvesting

Upper West Region: Nandom – <u>Baby Tests (32 Tests)</u>

Treatment	N	/Iaize gra			
	2010	2011	2012	Mean	
Flat bed	2147	1370	1254	1590	1590
Tied ridges	1807	1964	2390	2053	+25%
Tied ridges + grass strip	1764	1956	1938	1886	· 1970 _
Significance	ns	*	*		

J.B. Naab, SARI

Maize planted on tied ridges increased grain yield by an average of about 25% compared to flat bed systems.

Finding No. 2: <u>Minimum Tillage</u> Produced Similar Grain Yield of <u>Soybean</u> as Conventional Tillage.

<u>Conventional Tillage</u> Produced Greater Grain Yield of <u>Maize</u> than Minimum Tillage.

Soybean: Tillage Systems

Mother Tests

Upper West Region: Nyoli

Tillage Treatment	Soybear	Soybean grain yield (kg / ha)			
	2010	2012	Mean		
Conventional (tractor)	1100	1402	1251		
Minimum Tillage	1160	1350	1255		
No Tillage	997	1255	1019		
Significance	ns	ns	ns		
Baby	Tests (24	4)			
Tillage Treatment	Soybear	n grain yi	eld (kg / ha)		
	2010	2012	Mean		
Conventional (tractor)	1210	1524	1367		
Minimum Tillage	1166	1148	1157		
Significance	ns	ns	ns		

J.B. Naab, SARI

There was no effect of tillage practice on soybean grain yields.

Maize: Tillage Systems

Mot	Mother Tests			
Tillage Treatment	Maize	grain yie		
	2010	2012	Mean	
Conventional (tractor)	1729 a	1698 a	1713a	-25%
Minimum Tillage	1578 a	1004 b	1291b	
No Tillage	1111 b	1064 b	1087b	
Significance	*	*	*	
Baby	Tests (24	4)		_
Tillage Treatment	Maize	grain yie	eld (kg / ha)	
	2010	2012	Mean	
Conventional (tractor)	1294 a	1765 a	1530 a	-30%
Minimum Tillage	996 b	1108 b	1052 b	
Significance	*	*	*	J.B. Naab, SARI

Conventional tillage produced greater grain yields of maize.

Finding No. 3: <u>Fertilizer Application</u> Enhanced Grain Yield of <u>Maize</u> under Minimum Tillage.

Maize: Fertilizer Application - Tillage Systems

Upper West Region

Tillage Treatment	Maize grain yield (kg / ha)				
	2010	2011	2012	2013	Mean
Conventional (tractor) + higher recommended NPK	1093	1000	1800	1684	1395
Minimum Tillage + higher recommended NPK	1236	1177	1761	1413	1398
Significance	ns	ns	ns	ns	ns

J.B. Naab, SARI

With <u>higher recommended</u> fertilizer application <u>minimum tillage</u> produced <u>similar yields</u> as <u>conventional tractor tillage</u>.

Finding No. 4: <u>Sole Crop Rotations</u> (<u>Soybean – Maize</u>) Produced Greater Yields of Maize, than Continuous Maize by about 20%.

Maize: Sole Crop Rotations

Mothe	Upper	• West Region			
Tillage Treatment	Maize				
	2011	2013	Mean		
Continuous maize	1317 a	2014 a	1666 b	→ + 20 %	
Soybean – Maize Rotation	1559 b	2394 b	1978 a		
Soybean / Maize Intercropping	1318 a	1314 c	1316 c		
Significance	*	*	*		
Baby T	ests (30)				
Tillage Treatment	Maize g	rain yield	l (kg / ha)		
	2011	2013	Mean		
Continuous Maize	1639	1500	1570		
Soybean – Maize Rotation	1678	1630	1630		
Significance	ns	ns	ns	J.B. Naab, SARI	
rop rotation of soybean – maize, produced slightly higher					

grain yield of maize.

Sole

Finding No. 5: <u>Phosphorus Nutrition</u> is Important in Conventional or Minimum Tillage. Enhanced Soybean and Maize Yields by 50 to 100%.

No Fertilizer Control

Low rates of NPK (37:16:31 kg ha⁻¹)

P at 26 kg ha⁻¹

Soybean: Phosphorus Nutrition

Upper West Region

Treatment	Soy	Soybean grain yield (kg / ha)				
	Fertilizer	2010	2012	Mean		
Conventional Tillage	0	893 b	1166 b	1030 + 50 %		
26 kg ha ⁻¹	Р	1413 a	1630 a	1522		
37, 16, 31 kg N, P and K	NPK	1267 a	1756 a	1512		
No Tillage System	0	733 b	854 b	793		
26 kg ha ⁻¹	Р	1573 a	1654 a	1614 - + 100%		
37, 16, 31 kg N, P and K	NPK	1333 a	1700 a	1517		
Significance (for P)		*	*	*		

J.B. Naab, SARI

<u>Phosphorus nutrition alone</u> increased grain yield of soybean in all tillage systems in the range of 50 to 100% compared no fertilizer.

Maize: Phosphorus Nutrition

Upper West Region

Treatment	M	Maize grain yield (kg / ha)					
Previous Crop Soybean	Fertilizer	2011	2013	Mean			
Conventional Tillage	0	456 b	551 b	504 -			
26 kg ha ⁻¹	Р	1133 a	1311 a	1222 _	} + 142 %		
37, 16 , 31 kg N, P and K	NPK	2028 a	1636 a	1832			
No Tillage System	0	878 b	636 b	757 -	} + 45%		
26 kg ha ⁻¹	Р	1144 a	1044 a	1094 -	- + +3 /0		
37, 16, 31 kg N, P and K	NPK	1906 a	1471 a	1689			
Significance (for P)		*	*	*			
					J.B. Naab, SARI		

Phosphorus nutrition alone increased grain yield of maize following soybean in all tillage systems in the range of 45 to 140% compared no fertilizer.

Finding No. 6: <u>Local and Improved</u> Genotypes Responded to Nitrogen in Conventional or Minimum Tillage Systems.

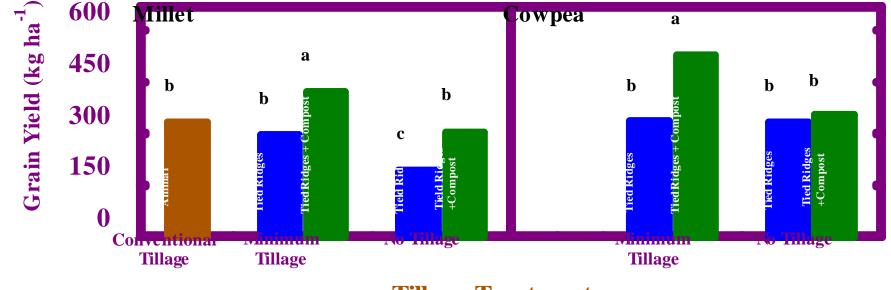
Sorghum: Tillage – Varieties – Fertilizer

Treatments	Stover (kg ha ⁻¹)	Grain (kg ha ⁻¹)	
<u>Tillage System</u>			
Conventional Tillage	3797 a	1379 a	Tillage:
No Tillage	3161 a	1641 a	No difference
<u>Varieties</u>			
Kapala	2218 a	<u>1941 a</u>	Genetics:
Dorado	2555 a	<u>1694 a</u>	>100 % increase
Local (Chere)	5663 b	895 b	100 /0 mercase
<u>Fertilizer Rate</u> (N kg/ha)			
0	1973 a	912 a	
30	4112 b	1395 a	
60	3832 b	1462 a	Nutrients:
90	3632 b	<u>2276 b</u>	>100 % increase
120	3848 b	1506 a	

J.B. Naab, SARI

Sorghum on various management produced doubled yields.

Key Findings: Mali



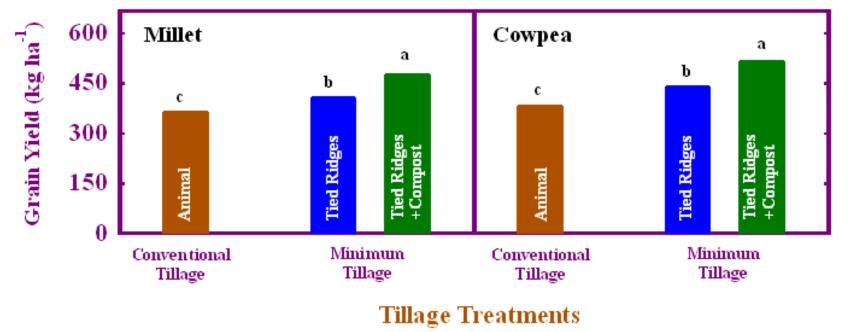
Drs. Mama Kone; Odiaba Samake, Samba Traore, P. Sissoko, IER, Mali

Finding No. 1: <u>Tied Ridges plus Compost</u> Improved Grain Yield of Millet and Cowpea by 30 to 50%.

Mother Tests – Millet Zone – Low Rainfall

Mali: Mopti

Tillage Treatments

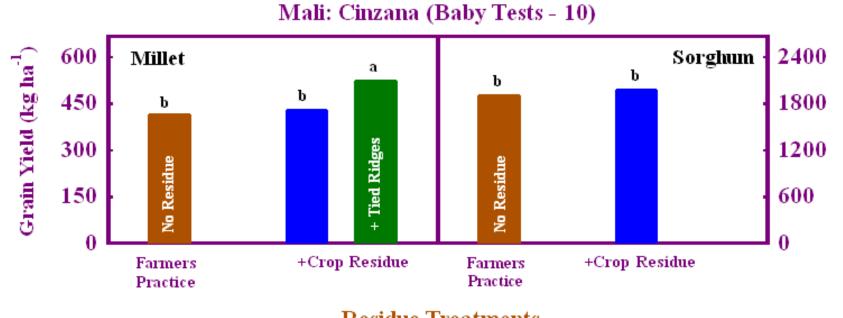

M. Doumbia et al. , IER

Minimum tillage with compost produced higher yields. No tillage not effective due to inefficient weed management.

Millet: Tillage x Water Harvesting x Compost

Baby Tests – Millet Zone – Low Rainfall

Mali: Mopti (Baby Tests - 4 Farmers)

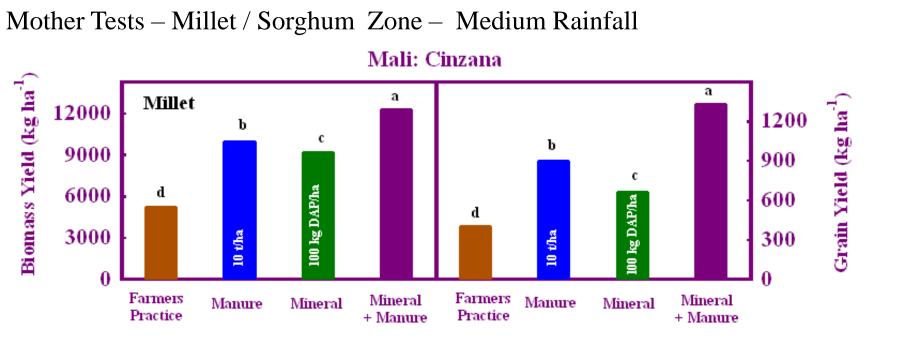


M. Doumbia et al., IER

Combining minimum tillage with water harvesting (tied ridges) or nutrient management (compost) higher yields.

Finding No. 2: <u>Tied Ridges plus Residue</u> Improved Grain Yield of Millet by about 25%.

Baby Tests – Millet /Sorghum Zone – Low – Medium Rainfall



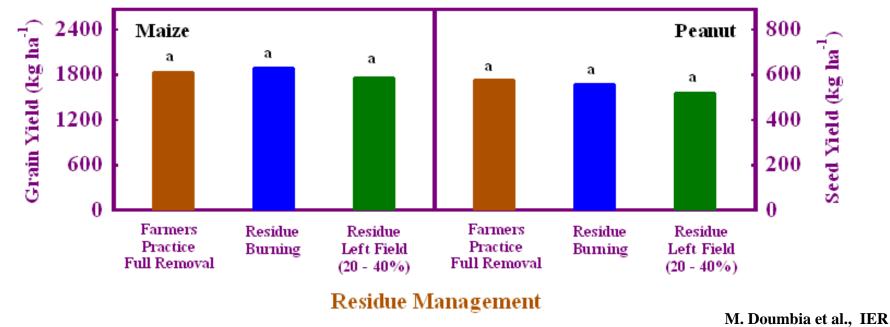
Residue Treatments

M. Doumbia et al., IER

Combination of residue and tied ridges increased millet yields. There was no effect of residue alone (amount problems and effects are long term). Residue left at planting is about 20 to 30%.

Finding No. 3: <u>Combination of Organic and Inorganic Fertilizer</u> Improved Biomass and Grain Yield of Millet by > 250%.

Integrated Fertilizer Management

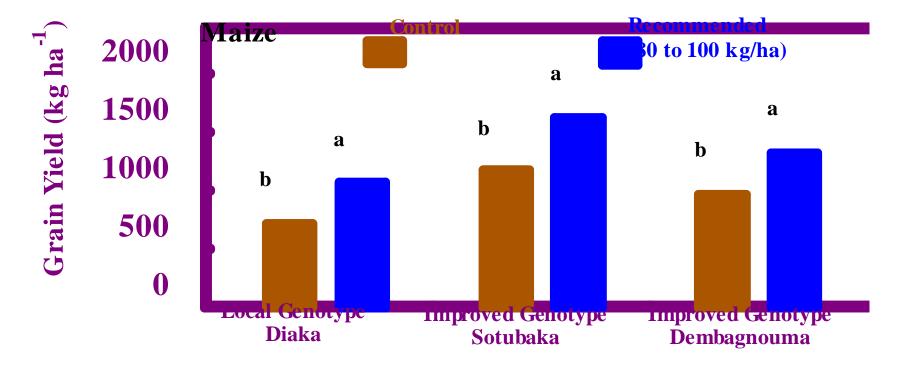

M. Doumbia et al., IER

Combination of organic and inorganic fertilizer produced improved biomass and grain yield. Availability and transport of manure may be problem.

Finding No. 4: <u>In Short Time Residues</u> did Not Influence Maize Yields.

Baby Tests – Maize Zone – Medium – High Rainfall

Mali: Sikasso (Baby Tests: 8)



There was no significant influence of different residue management practices on grain yield of maize and peanut. This is due to large variability in quantify of residue at planting.

Finding No. 5: <u>Fertilizer Application</u> Increased Yield of all Genotypes Under Minimum Tillage System.

Mother Tests – Maize Zone – Medium – High Rainfall

Mali: Sikasso Region

M. Doumbia et al., IER

Fertilizer Management x Genotypes

Some improved maize genotypes responded better to inorganic nitrogen fertilizer in different tillage systems.

Finding No. 6: <u>Contour Ridging (ACN)</u> Increased Yield and Soil Health.

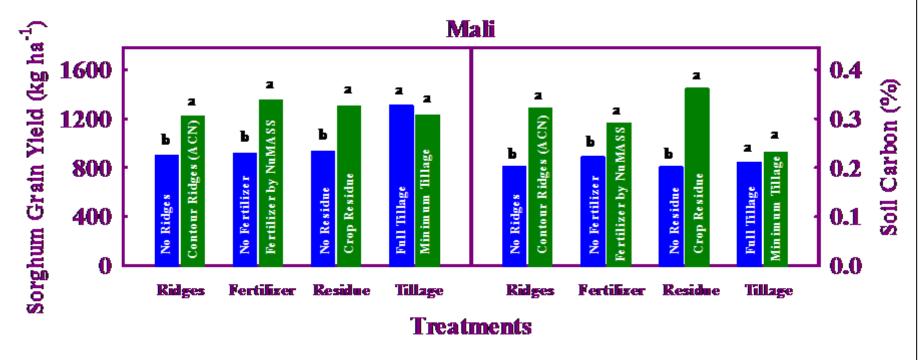


Figure 1. Structure of an ACN in a field showing Ado (permanent ridge) (A) and annually drawn ridges (B).

Dr. M. Doumbia

Intensive Crop Management – Long Term (~3 to 5 yrs)

Short-Term Experiment (about 3-5 years)

M. Doumbia et al., IER

Use of contour ridging (ACN), inorganic fertilizer and crop residue increased crop yields (>40%) and soil carbon (30 to 80%). Tillage practice did not influence yield and soil carbon.

Capacity Building

- On-farm research conducted by over 300 demonstrations.
 Entire research was done under on-farm conditions.
 Mother test plot sizes (minimum 50 m x 10 m).
 Baby test farmers (minimum 0.25 acres).
- Research demonstrated to about 1000 farmers.
- Technologies are being adopted by non-test farmers.
 For example = minimum tillage or components of research in over 200 ha.
- Enhanced research capacity in Upper West; Upper East stations of SARI in Ghana; and some stations of IER in Mali.
- Trained four graduate students: Two PhD (SARI, Ghana); and Two MS (USA) fully funded.

Recap: Ghana

- 1. Tied ridges improve grain yield of maize.
- 2. Minimum tillage produced similar grain yield of soybean as conventional Tillage.
- 3. Fertilizer application enhanced grain yield of maize under minimum tillage.
- 4. Sole crop rotations (soybean maize) produced greater yields of maize, than continuous maize systems.
- 5. Phosphorus nutrition is important in conventional or minimum tillage systems.
- 6. Local and improved genotypes responded to nitrogen in conventional or minimum tillage systems.

Recap: Mali

- 1. Tied ridges plus compost improved grain yield of millet and cowpea.
- 2. Tied ridges plus residue improved grain yield of millet.
- **3.** Combination of organic and inorganic fertilizer improved biomass and grain yield of millet.
- 4. In short time residues did not influence maize yields.
- 5. Fertilizer application increased yield of all genotypes under minimum tillage system.
- 6. Contour ridging (ACN) increased yield and soil health.

Acknowledgements

- All participatory farmers in Ghana, Mali, Niger and Burkina.
- Savanna Agricultural Research Institute, NGOs, MOFA
- **o** Ghana: SARI: J.B. Naab and R.A.L. Kanton (SARI) and their team.
- Mali : IER: M. Doumbia, S. Traore, M. Kone, O. Samake, P. Sissoko
- KSU: S. Staggenborg, C. Rice, D. Mengel, K. Garret, A. Jumponen, K. Roozeboom, N. Lilja, and D. Presley.

Ghana - Team

Mali - Team

K-State Team

P.V.V. Prasad

T. Dalton

N. Lilja

C. Rice

S. Staggenborg*

T. Selfa*

D. Presley

K. Dhuyvetter

etter K. Garrett

A. Jumpponen

* Moved from KSU

Multi-disciplinary: integrated for research, extension and graduate training